Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media.

نویسندگان

  • Hao Chen
  • Bin Gao
  • Hui Li
  • Lena Q Ma
چکیده

Many antibiotics regarded as emerging contaminants have been frequently detected in soils and groundwater; however, their transport behaviors in soils remain largely unknown. This study examined the transport of two antibiotics, sulfamethoxazole (SMZ) and ciprofloxacin (CIP), in saturated porous media. Laboratory columns packed with quartz sand was used to test the effects of solution pH and ionic strength (IS) on their retention and transport. The results showed that these two antibiotics behaved differently in the saturated sand columns. In general, SMZ manifested a much higher mobility than CIP for all experimental conditions tested. Almost all SMZ transported through the columns within one pore volume in deionized water (i.e., pH=5.6, IS=0), but no CIP was detected in the effluents under the same condition after extended column flushing. Perturbations in solution pH (5.6 and 9.5) and IS (0 and 0.1M) showed no effect on SMZ transport in the saturated columns. When pH increased to 9.5, however, ~93% of CIP was eluted from the sand columns. Increase of IS from 0 to 0.1M also slightly changed the distribution of adsorbed CIP within the sand column at pH 5.6, but still no CIP was detected in the effluents. A mathematical model based on advection-dispersion equation coupled with equilibrium and kinetic reactions successfully simulated the transport of the antibiotics in water-saturated porous media with R(2)=0.99.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transport of Silica Colloid through Saturated Porous Media under Different Hydrogeochemical and Hydrodynamic Conditions Considering Managed Aquifer Recharge

Colloids may have an important role in regulating the structure and function of groundwater ecosystems, and may influence the migration of low solubility contaminants in groundwater. There is, however, a degree of uncertainty about how colloids behave under the variable hydrogeochemical and hydrodynamic conditions that occur during managed aquifer recharge. We used an online monitoring system t...

متن کامل

Transport and retention of biochar particles in porous media: effect of pH, ionic strength, and particle size

Biochar land application can potentially be used for carbon sequestration, improving soil quality, and reducing non-point source pollution. Understanding biochar mobility is important because its transport in soil greatly influences its stability, the dynamics of soil microbial communities and organic matter, and the movement of biochar-associated contaminants. Here, the transport of biochar pa...

متن کامل

Ionic-strength effects on colloid transport and interfacial reactions in partially saturated porous media

[1] Contaminant migration through the vadose zone may be influenced by the presence of mineral colloids that are mobilized during infiltration events. In this work, we report model calculations and experimental data on the role of pore water ionic strength in the transport of silica colloids through water-saturated and unsaturated porous media. The transport model solves the advection-dispersio...

متن کامل

Three-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.

In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...

متن کامل

The influence of biofilms on the mobility of bare and capped zinc oxide nanoparticles in saturated sand and glass beads.

Biofilms are a common constituent of the subsurface and are known to influence contaminant transport; however only a few studies to date have addressed microbial controls on nanoparticle mobility in porous media. The impact of a 3-day Pantoea agglomerans biofilm on the mobility of zinc oxide (ZnO) nanoparticles was studied in column experiments containing sand and glass beads at near-neutral pH...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of contaminant hydrology

دوره 126 1-2  شماره 

صفحات  -

تاریخ انتشار 2011